
NASA-CR-204764
w.ect Volume Rendering with Shading

via Three-Dimensional Textures

Allen Van Gelder* Kwansik Kim*

University of California, Santa Cruz

/4-/; -, ,..- "/1 /

X._

Abstract

A new and easy-to-implement method for direct volume rendering
that uses 3D texture maps for acceleration, and incorporates
directional lighting, is described. The implementation, called

Voltx, produces high-quality images at nearly interactive speeds on
workstations with hardware support for three-dimensional texture

maps. Previously reported methods did not incorporate a light
model, and did not address issues of multiple texture maps for

large volumes. Our research shows that these extensions impact

performance by about a factor of ten. Voltx supports orthographic,

perspective, and stereo views. This paper describes the theory and

implementation of this technique, and compares it to the shear-warp

factorization approach.
A rectilinear data set is converted into a three-dimensional texture

map containing color and opacity information. Quantized normal

vectors and a lookup table provide efficiency. A new tesselation of

the sphere is described, which serves as the basis for normal-vector

quantization. A new gradient-based shading criterion is described,

in which the gradient magnitude is interpreted in the context of the
field-data value and the material classification parameters, and not

in isolation. In the rendering phase, the texture map is applied to a

stack of parallel planes, which effectively cut the texture into many

slabs. The slabs are composited to form an image.

Keywords: Computer Graphics, Scientific Visualization, Texture

Map, Direct Volume Rendering, Spherical Tesselation.

1 Introduction

Rendering speed has always been a major problem in direct

volume rendering, because all regions of the volume may contribute

to the image, and because new orientations generally require

considerable re-computation. A spectrum of methods offering
different combinations of rendering speed versus image quality have

been presented [DCH88, Sab88, UK88, Lev88, Kru90, Lev90a,
MHC90, Wes90, LH91, Lev92]. Image-order algorithms like ray

casting produce superior quality images, but have to traverse the data

structure redundantly [Lev90b, DH92]. Some object-order methods
use hardware-assisted Gouraud-shading capabilities to accelerate

rendering, by calculating the projections of volume regions and

treating them as polygons [ST90, LH91, WVG91, Wi192, VGW93,
WVG94]. Shear-warp factorization methods have been developed

for parallel volume rendering [CU92, SS92], and serial ILL94]. The

method of this paper is compared with shear-warp in Section 4.

This paper presents a new method for direct volume rendering,

called Voltx, that takes advantage of hardware-assisted, 3D texture

mapping, and incorporates a light model. We have found Voltx to

be significantly faster than the hardware-assisted Gouraud-shading
method (called coherent projection), and comparable in speed to

the shear-warp algorithm of Lacroute and Levoy (called LL) when

comparable imaging options are selected. Whenever one voxel

does not cover too many pixels, Voltx produces images comparable

to ray-casting. Perspective projections, which are essential for

*Computer Science Dept., Univ. of California, Santa Cruz, CA 95064
USA. E-mail:avg@cse .ucsc .edu, ksk@cse.ucsc .edu

comfortable stereographic viewing, do not degrade the performance.
A stereo interface has been implemented.

Voltx is robust in the sense that it is able to produce images

of good quality even though the transfer function has high

frequencies or discontinuities. Also, rotations of the volume do
not introduce artifacts, and perspective projections do not degrade

the performance. All of these problems were reported for LL by
Lacroute and Levoy [LL94]. Their paper suggests ways to get

around some of the problems.
Some limitations of Voltx are the restriction to rectilinear

volumes, the need to redefine 3D texture maps whenever the volume

is viewed from a new rotation, and the fact that color, not data, is

loaded into texture memory. The first limitation may be inherent
in the method. The latter limitations apply only when directional

lighting is chosen, but such lighting is usually needed to obtain
informative images. They might be addressed as described in
Section 3.3.

Several other papers describe the use of 3D texture-mapping
hardware for direct volume rendering. Akeley briefly mentioned

the possibility for the SGI Reality Engine [Ake93]. Cullip
and Neumann sketch two approaches, which they call object

space (somewhat related to shear-warp) and image space, and
apply them to CT data [CN93]. Guan and Lipes discuss

hardware issues [GL94]. Cabral, Cam and Foran describe
how to use texture-mapping hardware to accelerate numerical
Radon transforms [CCF94]. All of the methods described in

these papers require substantial programming to "hand compute"

transformations, clipping, and the like, details of which are omitted.

Wilson et aL reported on an earlier version of Voltx [WVGW94].
To our knowledge no previously reported 3D texture-map method

addresses either shading with a light model or the necessity of

multiple texture maps for large volumes. Our research shows that

these extensions impact performance by about a factor of ten.

After a quick overview in Section 2, this paper describes how
most of the technical programming used by previously reported

3D texture-map methods can be eliminated by use of graphics

library procedures to perform texture space transformations and
set clipping planes (Section 3.2). A new method to judge which
voxels are on a material boundary within the volume, for shading

purposes, is described in Section 3.1.2. We also present a software
look-up table technique with quantized gradients (actually, normal
vectors), which makes our rendering technique nearly interactive,
while providing excellent image quality (Section 3.1.3). A new
tesselation of the sphere is described, which serves as the basis
for normal-vector quantization (Section 3.1.4). Section 4 compares
Voltx to shear-warp factorization. Experimental results are reported
in Section 5. Conclusions and future directions are discussed in
Section 6. Additional details are available in a technical report

[VGK96].

2 Overview of 3D Texture-Map Technique

In an initial step, the quantized gradient index and material
classification of each voxel in the volume are computed. A voxel
may be classified as either reflecting or ambient, depending on the

Figure 1: Slices through the volume in original orientation (left),

and rotated (right). The viewer's line of sight is orthogonal to the
slices. In both orientations, texture coordinates are assigned to

comers of the square slices in such a way that they interpolate into

the range [0, 1.13]exactly when they are within the volume.

client-supplied gradient-magnitude threshold. (If this threshold is
modified, the voxels must be reclassified.) The result of this step is

an index for each voxei into the lookup table described next.

Whenever a new orientation of the volume or new light position is

specified by the client, a software lookup table is created that assigns,
for each combination ofquantized gradient _and reflecting material,

the appropriate color and opacity (RGBA). Color and opacity are

calculated to account for depth integration. Color calculations for

ambient material are also performed, but they are independent of the

gradient, and consume negligible time. Thus the size of the lookup

table is effectively the product of the number of quantized gradients
and the number of reflecting materials, and is independent of the

size of the volume. References to "color" generally mean color and

opacity in the ensuing discussion.

With the pre-assigned look-up table index of each voxel, 3D

texture maps are filled with pre-computed color values, one "texel"

per volume voxel. While this work is proportional to the size of the
volume, it involves only few integer operations from one array to

another, per voxel. The preceding steps are easily parallelizable in

a MIMD shared-memory environment. However, transferring the

texture maps into texture memory, which uses the graphics pipeline,

is not parallelizable. Limits on texture memory force large volumes

to be partitioned into multiple texture maps.

These texture maps are then processed in the back-to-front

visibility order of the partitions of the volume that they represent.

Each one is applied to many parallel planes, which make slices

through the texture (see Figure 1). Each plane, orthogonal to screen-

z, is rendered as a square, so texture coordinates need be specified

only at its four comers. Whenever the lighting model changes or
the client's viewing direction changes, the lookup table entries are

updated and the texture map is redefined.

in 3D texture mapping, each polygon vertex is given a point

in the texture space, and the graphics system maps values from

the texture map onto the polygon surface by interpolating texture
coordinates. This is very similar to Gouraud shading except that

texture coordinates are being interpolated instead of colors. The
crucial difference is that texture coordinates outside of the range

[0, 1.0] are still interpolated, whereas such colorswould be clamped.
The comers of the squares have out-of-range texture coordinates,

but interpolation creates in-range values precisely when the pixel is
within the volume.

The squares are parallel to the projection plane in screen space,

IWe shall refer to "quantized gradients" although only the direction is
quantized, and not the magnitude.

while the 3D texture map can be oriented as the client desires. More

squares at thinner spacing, up to a point, give better image quality,

while fewer give greater speed.

The major advantage of this method is that after the original data
is converted into 3D texture maps, the Reality Engine's specialized

texture hardware can perform the rendering and compositing of

squares very quickly. While few graphics workstations offer

3D texture mapping in hardware at present, we believe it will

become more common, providing a quick and simple direct volume

rendering method for rectilinear data.

3 Detailed Description of Voltx

The two major steps in Voltx are: first, create the texture

map (Section 3.1); and second, render the slices (Section 3.2).

Frequencies of these steps is discussed in Section 3.3.

3.1 Creating the Texture Map
The texture-map calculations have several parts, which are triggered
by different events. Voxel classification occurs when the transfer
function or certain gradient parameters change; a lookup table is
recalculated when the volume rotation changes, or the light position

changes; the texture map is filled whenever any of the above events

occur. This description assumes directional lighting is in effect. For
ambient light only, faster alternatives exist (Section 3.3).

Each texture-map entry, or "texel", corresponds to one voxel.
Its color is the sum of ambient and reflecting components. The

"ambient" component is based on the traditional "luminous gas"
model used in direct volume rendering. The reflecting component is

based on a surface responding to directional light, and only applies
at parts of the volume judged to represent the boundary surface
between different materials. Details are spelled out below.

3.1.1 Ambient Light Component

We interpret each plane to be rendered as being at the center of a
slab (slice with thickness) through the data. This means that each

plane must contribute the color intensity and opacity due to one
such slab. The thickness of every slab, A, is just the total distance
covered by the stack of planes divided by the number of planes. Let
A be the slab thickness. Let E(p) denote the color emission per

unit distance, for each primary color p, and let Al denote opacity

per unit distance. These values are computed at each voxel of
the volume based on the client-supplied classification function and

transfer function. The color C(p) and opacity A that must go into

the texture map are computed by now-standard methods [WVG91,

VGW93]. Briefly, the formulas are:

o :
C(p) = E(p) (l -_-Ae-_^_]

A = I - e -_a

where p ranges over Red, Green and Blue. Note that C is well-

defined as c_ approaches 0, by taking a power series expansion.

This equation expresses the integration of color and opacity

through the thickness of the slab, without considering the shading

model, and is applied to both ambient and reflecting materials.

For perspective viewing, the effective slab thickness increases

slightly with the off-axis angle. Our implementation ignores this
effect, which is at most 4% on the periphery of the image, for

normal viewing geometry with a 600-pixel window width (about 15

cm.) and viewing distance 70 cm. The error can increase to 14%
for a 1000-pixel window width. One way to compensate for this

variation is to render concentric spherical shells, rather than planes.

The spherical tesselation technique of Section 3.1.4 is suitable for

generating the triangles.

3.1.2 Reflecting Surface Classification

A voxel is considered to be reflecting material when it is judged

to be "near" the boundary of a volume segment composed of that

material, based on the range of field values for that material, and

the gradient of the field function.

Example 3.1: Consider a CT data set with unit spacing between
voxels, in which bone is considered to be I l0 and greater densities.

Suppose a voxel's data is 114, and the gradient magnitude is 10.
We estimate that the bone boundary is 0.4 units from the location of

this voxel, traveling in the direction of the negative gradient. If the

voxel spacing is ! unit, we judge the voxel to be on the boundary of

bone, and classify it as reflecting material.
However, if the voxel's data is 130, even though the gradient

magnitude is still l 0, we judge that that neighboring voxels are also
bone. Thus, this voxel is not considered to be on the surface, and

we classify it as ambient material. []

Given a voxel at location _0, with data value d, and gradient vector

7, an approximate model of the field function in its neighborhood is

f(q) = d + 7" (q- _o)

Let b be the lower limit of the range of data that is classified as

the same material as d. (In the example, b was 110.) Let A be the

inter-voxel spacing. Based on this linear approximation, one of the

26 neighboring voxels has data below b if and only if (d - b) < s,

where

s = h_l-_xl+ h_l-r_l+ h.l-_zl
Let us call the quantity s the cell-diagonal data shO. A similar test

applies for the upper boundary a, using (a - d) < s.
When s is near the value of (d - b) or (a - d), we can assign a

"probability" of being on the boundary, instead of making a binary

decision, to allow for noise in the gradient and nonlinearity of the

field function. In the implementation, when s _< 0.5(d - b), the

"probability" is set to 0, and it increases linearly to become 1 when

s = 1.5(d - b). The client can fine tune the classification by
means of a scaling factor to be applied to this probability function,

causing either more or fewer voxels to be judged to be on a surface
with some nonzero "probability". The final shading for the voxel
combines the ambient and reflecting colors and opacities according

to the "probability".

Thus the gradient magnitude is interpreted in the context of the
data value and the classification parameters, and not in isolation,

departing from earlier work [Lev90a, LL94].

3.1.3 Reflected Light Component

As mentioned, for each combination of quantized gradient and

material, the material's surface response to directional lights is

calculated, added to the ambient component, and stored in a lookup

table. Our implementation uses the "half-way vector" specularity

model [TM67, CT82], as well as Lambertian diffuse shading.

Gradient quantization is discussed in Section 3. 1.4.

The resulting color intensities, clamped if necessary, are real

numbers in the range [0, 1.0] where 0 is black and 1.0 is full color.
These floating point values must be converted to integers in an

appropriate range, and packed into a 32-bit or 64-bit texture-map

entry, for storage immediately in the lookup table, and eventually

in the texture map.

Let the client have specified:
• m as the number of materials;

•t-d/2)

fat

, • (d/2)

Figure 2: Geometry of Texture Coordinates. This illustrates an

orthographic projection of a 3-D volume of size (L_, Ly, L=) and

the bounding cube of side d. Sides L u and L_ are not labeled. The
2 £

long diagonalthrough the volume is length d = (L 2 + L 2 + Lz) 2.

• k as the number of refinement levels for quantized gradients, as
described in Section 3.1.4; then

• g = 30 * 4 k + 2 is the number of quantized gradients.

The lookup table will have (m + 1) x g entries which are possible
combinations of materials and gradients. Material 0 is the null

material; however its places in the lookup table are used to store
colors for ambient materials, which need not be combined with a

gradient index.
In the setup procedure,each voxel's material index M is classified

and its field gradient is calculated. If the voxel has reflection

properties, according to the criteria of Section 3.1.2, then the

quantized gradient index G is determined by finding the closest

available quantized gradient. The voxel's final lookup index is

(Mg + G). If the voxel has no reflection properties, its index is

simply M.

The lookup table needs to be recalculated whenever any factor

involving light changes, including a rotation of the volume or
a movement of the light source. Previously reported methods

for volume rendering with 3D texture maps did not allow for

directional lighting effects, and therefore could avoid recalculation

after rotation of the volume [CN93, CCF94, WVGW94].

3.1.4 Gradient Quantization
We quantize the gradient direction space into a finite number of unit

gradients. The goal is to distribute a set of points on a unit sphere

as evenly as possible, and take the vectors from origin to the points

as the quantized gradients. Our method tesselates the sphere into

triangles, and uses the triangles' vertices as the quantized gradient
directions. Numerous tesselations of the sphere are known. Two

are based on equilateral spherical triangles as the starting point: the

regular octahedron, with 8 triangles and the regular icosahedron,

with 20 triangles. We have developed a new method by considering
both an icosahedron and its dual figure, the dodecahedron, with 12

pentagons. See Figure 6, top, which shows the vertices of these dual

polyhedra. Note that the icosahedron has 12 vertices (black) and the
dodecahedron has 20 vertices (gray). This combination provides 60

congruent, but not quite equilateral, triangles as the starting point.

A typical method to refine the initial quantization is with recursive

subdivision on the starting triangles. By connecting midpoints of

sides, each triangle is partitioned into four new triangles. However,

on the sphere, unlike the plane, the new triangles are not congruent.
For example, a quick and easy way is to subdivide the equilateral

trianglesfromtheregularoctahedron. Unfortunately, this method

will not produce very evenly distributed gradients, because certain

triangles will continue to have a 90* angle, while others approach
the more desirable 60 ° angles. Starting from the icosahedron's 20

triangles, the discrepancy is less, varying from 720 to 60*.
Our new method starts from the 32 vertices of the icosahedron

and dodecahedron, combined, which produce 60 triangles. These

triangles, being more nearly planar than the starting spherical

triangles associated with the regular polyhedra, undergo less
distortion during subdivision. The result of two levels of refinement

is shown on the bottom of Figure 6, where refinement vertices are
shown as smaller dots.

Images in this paper are based on four levels of refinement,

yielding 7682 vertices. The general rule for the number of vertices
after k levels of refinement is g ----30 • 4 k -I- 2.

3.2 Rendering Slices
Once the 3D texture is created, we render the volume by applying the

texture to parallel planes (represented as squares in screen-space)
and, thus, build up a stack of slabs through the texture, each slab
being the region between two adjacent slices (see Figure 1). The

squares are drawn from back to front.

3.2.1 Texture Coordinates for Original

Orientation

Consider a world space (x, g, z) coordinate frame in which the
center of the volu me is the origin. Texture coordinates (s, t, r) will

become proxies for spatial (x, g, z). Essentially, we construct a
bounding cube centered on the origin that is large enough to contain
any rotation of the volume. The side of the bounding cube needs to
be the length of the diagonal through the volume, which we shall

denote by d. The squares to be rendered (see Figure 1) comprise a
series of slices through the bounding cube, parallel to the cube's xg

faces.
Now suppose the volume has resolution (n_, ny, n_) and spacing

(Ax, Ag, Az). We view this as a set of voxels, so the volume has
sides of lengths n_Ax, nyAy, and nzAz. The existing hardware

requires the texture-map resolutions to be powers of two. Therefore,

let N:_, Ny and Nz be the least powers of two that are at least as
great, respectively, as n_, ny and nz. We also define

Lx = N_Ax, Ly = NyAy, Lz = NzAz.

In its initial orientation, we want the texture coordinates of the

point (- ½n_Ax, - _nyAy,t -½nzAz) to be (0,0,0). Similarly we

want the texture coordinates of (½n_Ax, -- ½nuAy, -- ½nzAz) to be

(nx/N_, O, 0), and so on for other comers of the volume. The
constraints are satisfied by the functions

() = (_+ ½n=,',_)/(N=,',_)

t(y) = (_,+ ½,-,,,Ay)/(N,,,,,y)
,-(_) = (z+ ½,-,z,',z)/(N:,",z) (l)

I I
Since the comers of the bounding cube are (4- _d, + _d, 4- ½d), it

follows that we want to assign texture coordinates to these comers

by evaluating s, t, and r in Eq. I at 4-½d.

We can represent the required 3D transformation from (x, y, z)

to (s, t, r) as a combination of scales and translation. Let matrix D
denote the uniform scale by d, let matrix S denote the nonuniform

scale by (d/L_, dlLy, d/L_) (the reason for two scales will
become evident later), and let matrix T denote the translation by

(½n=/N=, ' l N-_n_lNy, _n=l _). Then

(s,t,r) = (x,y,z)D-' ST (2)

The texture map has resolution (N,, Ny, Nz).

Once the texture coordinates for the comers of the bounding

cube have been found, those for the squares that slice up the cube

are found easily by interpolation in z; only the r coordinates are
affected.

3.2.2 Arbitrary Viewing Angles

From the description in Section 3.2.1, the volume can be correctly
rendered if it is being viewed "from head-on", in its original
orientation. (Observe that n, ordinary 2D textures could be used
to do this.) However, to view the volume from an arbitrary angle
requires a 3D texture map, to correctly calculate the intersection of
the rendered squares with the 3D volume. To render the volume
from a rotated viewpoint, we keep the bounding cube stationary in
screen space, and instead rotate the texture-space coordinates of the
comers of the squares that slice up the bounding cube (see right half

of Figure !).
This can be done in program code using standard matrix

multiplication techniques. Alternatively one can use the texture
matrix, which is part of the graphics system. This matrix is just
like a viewing matrix: it transforms texture coordinates before they
actually are used. In this way the programmer gives the same texture

coordinates at geometry vertices no matter what the orientation and
the texture matrix does the rotation. In either method, the CPU
overhead is small.

The required texture-space transformation is obtained simply
by inserting the inverse of the client's rotation matrix R into the
transformation of Equation 2, as follows:

(s,t,r) = (x,y,z)R-1D-t ST

= (z,y,z) D-tR-IST (3)

using the fact that uniform scaling commutes with rotation.

Evaluating (s,t,r) at the comers of the bounding cube (i.e.,
I / t

(4- id, 4- _d, 4- i d)) can be accomplished by applying the texture-

space transformation R -t ST to (q-½, 4-½, +½). The graphics
library calls, while in texture mode, are therefore the given translate
T, nonuniform scale S, as defined before Equation 2, following by

negated, reversed order, rotation calls as specified by the client.

The mapping from world space to texture space is linear, therefore

any rotation of it is also linear. Trilinear interpolation (done in
hardware, in our case) of linear functions commutes with rotation.

Therefore the image of the volume is not deformed. Care must be
taken however with regards to the order in which scaling and rotation

operations are performed on the texture coordinates. If a volume
does not have the same A's in each dimension, matrix S specifies
a non-uniform scale, which does not commute with rotation. The

wrong order leads to shearing distortion. When transforming the
texture coordinates, the correct order of operations is rotation, then

scaling. More details and examples appear elsewhere [VGK96].

3.2.3 Planar Regions Outside the Volume

One issue is how to deal with rendering regions of the planes that lie
outside the volume. Recall that the planes always remain parallel
to the projection plane, and extend to the bounding cube, but the
image of the volume within them rotates. Previous methods "hand-

clipped" planes by intersecting them with the faces of the volume,

producing a 3-6 sided polygon. The solution we chose uses clipping

planes. We can position six programmable world-space clipping

planes (available in Silicon Graphics workstations) at the six faces
of the volume, to clip out any parts of the rendered squares that lie

outside the volume. Clipping planes may also be controlled by the

client to restrict the portion of the volume to be drawn.

Data, Gradients Classification,
map to colors

3D texture map buffers I

Ideal Architecture

Data, Gradients Classification,

i I] map tol colorsl

I_ _ 3-4 parameter :
I

software lookup table

[3D texture map buffers 1

texture memory]

Current Architecture

Data, Gradients Classification,
map to colors

. b_ers 1 _3D texture map

_--j4 one-parameter

' coor- ndex ookupsI

I texture memory I

Open GL Alternative

Figure 3: Alternatives for use of 3D texture maps. Heavy boxes denote special hardware; light boxes are software tables. Double arrows

indicate operations needed for each new viewpoint. Single arrows denote occasional operations. Trilinear interpolation applies to contents

of texture memory. Ideal architecture would apply 3-4 parameter texture lookup table to the interpolated values. Reality engine offers 4

one-parameter texture lookup tables, which suffice only for rendering without directional lighting.

3.2.4 Number of Planes

The default number of planes is chosen as d/Az, so that when

viewed straight on, each data point is sampled by one plane. For

example, a 643 volume with uniform A's would get 110 planes. The

rendered images are more accurate as more planes are used. With
few planes, artifacts may be noticeable where a clipped edge of a

rendered square is visible. We usually chose two to four times the
default, as the cost of additional rendered planes is a very minor

factor with directional lighting.

3.3 Hardware Texture Map Issues

Several possible organizations of a volume rendering system based

on 3D texture maps in hardware are shown in Figure 3. Ideal texture-
mapping hardware would be able to interpolate data and gradient,
then map to color ("color" includes opacity in this discussion).
This produces the greatest accuracy in the presence of nonlinear
mappings from data to color [WVG94]. For such interpolation to
make sense, the texture memory must be a continuous function of
the data and gradient values. 2

For rendering without directional lighting, the gradient is
irrelevant, and a one-parameter texture lookup table, as offered
in the SGI Reality Engine, suffices. In this case, Voltx realizes the
"ideal" architecture. But such images have limited usefulness. One

possible application is simulation of x-ray views (Figure 5).
In the more common case where directional lighting is desired,

Voltx realizes the architecture in the middle of Figure 3. In this

case, and in the Open GL alternative, the texture memory contains
color, computed independently at each voxel of the volume. Buffers
contain discontinuously encoded representations of the gradient, as
described in Section 3.1.3. (In the figure, the "Data, Gradient" are so
encoded in the "current" architecture; this one-time operation is not
shown. The buffers in the middle section are maintained by the SGI

GL library, and contain color. The buffer shown in the "Open GL
alternative" is encoded and maintained by the application program.)

Thus the hardware interpolates color, rather than data. This leads

2An attempt to encode data and gradient discontinuously into one
parameter, and sample the texture memory by the "nearest neighbor" method
failed on the SGI Reality Engine. Following our problem report, the
new SGI documentation states that the "nearest neighbor" method is only
approximate. Due to inaccuracy of a filter, values that do not correspond
to any neighbor may be delivered. This makes it impossible to use a
discontinuous texture lookup table to perform arbitrary decodings of the
texture map.

to inaccuracies in the presence of nonlinear mappings from data to

color [WVG94]. The inaccuracies are more pronounced in close-up

views. The 3-4 parameter texture lookup table needed to realize
the "ideal" architecture seems unlikely to be economically justified

for commercial systems in the foreseeable future.

4 Comparison to Shear-Warp Factorization

The Voltx method has certain similarities to the shear-warp

technique, in that the volume is represented as a series of parallel

planes for rendering purposes. In the shear-warp technique, those

planes correspond to slices of the original volume. The principal
slices are used, which are those most nearly orthogonal to the sight

line. In general, they are oblique to the line of sight. The principal
face is the principal slice closest to the viewer. In the Voltx method

the planes are parallel to the projection plane, and are, in general,

oblique to the volume.
The shear-warp method can be viewed as a form of ray-casting

in which the rays are sparse, and arranged in a parallelogram pattern

that corresponds to the vertices in the principal face of the volume

(Figure 4, left), rather than the usual square pattern of pixels. Values

computed on these obliquely arranged rays in the "shear" phase
are interpolated at screen pixels in the "warp" phase. Figure 4,

center, shows how shear-warp "rays" sample the volume. The dots

represent points sampled, and the lines going up from the dots
indicate where the volume is assumed to have the sampled value

for color/opacity integration purposes. Figure 4, right, shows the

comparable situation for Voltx, assuming 20 pixels and 8 rendered

planes. In effect, a ray is shot from each pixel, and the sample is

computed by trilinear interpolation.
Lacroute and Levoy have reported on a fast shear-warp

implementation [LL94], a limited version of which has been
distributed. It will be called LL in this discussion. It is apparent from

their paper and their code that speed was a major design objective of

LL, and they have succeeded admirably in attaining this objective.

We have made comparison tests of the same volume data on LL and

Voltx. The general rule is that LL is somewhat faster, while Voltx

is less prone to artifacts. Some of the issues are discussed below.

Both methods use planes through the volume, and increasing the

number of planes improves the resolution. In Voltx the number of

planes is a minor cost consideration and can be adjusted at run time,

as it is independent of the volume. In LL, the number of planes
is fixed by the resolution of the volume. To increase it requires

O
O

e

1 1111111111111
1 1111111111111

1111lilllllllllllJ
ll!llll!llll!ll
111111111111111
111111111111111
111111111t11111

1
11

1
li
11
11

Shear-Warp "Ray" Sampling 3D Texture Map "Ray" Sampling

Figure 4: Shear-warp and volume texture methods are equivalent to certain ray-casting policies, as discussed in Section 4. The volume is
4 x 4 x 4. Screen-z is out of the page on the left, where the volume is represented by its principal slices. Screen-z is down in the center and

right, where the principal slices slant up to the right.

msampling the volume in a pmprocessing step, and the increased

resolution has a substantial impact on performance. This appears

to be an implementation choice, not an inherent property of shear-

warp.
Both methods currently compute color ("color" includes opacity

in this discussion) independently at each voxel of the volume, then

interpolate color from those points. This leads to inaccuracies in the

presence of nonlinear mappings from data to color, which are more

pronounced in close-up views, as discussed in Section 3.3. The

shear-warp technique, being entirely in software, can interpolate

data and gradient, then map to color.

Smoothing out the transfer function was also recommended as

a way to improve the shear-warp image quality, but such a step
must bring image accuracy into question. Actually, Voltx always
uses discontinuous transfer functions, as the each voxel is always

classified as a single material. This can cause aliasing artifacts, but

they are not noticeably sensitive to the orientation of the volume.

Lacroute and Levoy reported that artifacts increase for LL as the

rotation approaches 45 degrees.

5 Results

Rendering times for data with various sizes are summarized in
Figure 7. The rendering was done on a Silicon Graphics Reality

Engine II with two megabytes of 3D texture-map hardware and one

raster manager. Classification time includes material classification,

and quantizing the voxel gradients, and is based on one processor.
This task is needed only once per run, as a rule. Rendering time

includes updating the lookup table and rendering with new rotation
or new lighting model for material definition. Times are real elapsed
seconds, rather than CPU seconds, because CPU times do not

reflect delays due to the graphics pipeline, which is heavily used.

For comparison, the last column shows times without directional

lighting, which are about 10 times faster.

Figures 5 and 8 (color plate) present a sample rendering of data

sets listed in Figure 7. We used 1000 planes to render all volumes

except Hipip, (High Potential Iron Protein) for which we used 128.

("Planes" were discussed in Section 3.2.) All images were rendered

at 600 x 600 pixels, with four 8-bit color channels.

We found that times can be reduced by a factor of 1.2 to 2.5

by using four processors. These disappointing speed-ups are due
to the fact that the graphics pipeline must be used serially, and it

comprises a large fraction of the elapsed time. The GL interface

requires redundant copying and processing of of 3D texture maps.
For example, on the MR brain data set, 8 seconds are consumed in

defining the 32 texture maps with eexdef3d, using one processor.

Open GL offers a different interface (glTexImage3DEXT with

COLOR_INDEX format, and mapping tables for each of R,G,B,A),
but our test showed that it still took 8 seconds to process 32 texture

maps.
However, perspective projections incur no observable time

penalty, in contrast to shear-warp techniques. They are essential

for comfortable stereographic viewing. Also a pair of stereo images

often requires much less than twice the time of a single view, as one

pass through the texture loading suffices.

6 Conclusions and Future Directions

Volume texturing is a fast and simple method for direct volume
rendering of rectilinear volumes available to those with appropriate
hardware. With a directional light model, images have very good

quality. Our implementation uses either orthographic or perspective
projection, and supports stereo viewing (Figure 5 and color plate

Figure 8).
By turning over many tasks to the hardware and libraries, we

have simplified the programming task, but have given up on many
optimization opportunities. On the other hand, with directionally
shaded 3D texture-map images, the best-quality options consume
only a little more time than the cheapest, so you might as well use
them.

Lacroute and Lcvoy describe several optimizations that greatly
increase the performance of LL. Their best reported times depended

heavily on: (1) skipping over low-opacity (.05) voxels and nearly

opaque (.95) pixels, (2) monochrome imaging, and (3) the use of

orthographic,ratherthanperspective,projection.Thesepractices
compromiseimagequalityundersomecircumstances,butthey
arenotinherentpartsofshear-warp.ThefactthatLLsoftware
competeswithhardware-dependentVoltxcallsintoquestionthe
valueofhardware3Dtexturemaps,atleastasofferedintheReality
Engine,forthisapplication.(Thefactthathardwaredesignscannot
befixedormodifiedby end-users is another practical consideration.)

While the graphics library and hardware handle many imple-

mentation details that would otherwise require hand-coding, there

is some possibility that a software implementation of the same

transformations could be competitive through increased ability

to use parallelism. This would permit improved accuracy by

interpolating data and gradients, rather than color, as discussed in

Section 4. This is one topic for future investigation.

A related question that deserves investigation is whether the

shear-warp technique can be improved in accuracy by interpolating

data and gradients, rather than color, without incurring too great a
loss of time.

Acknowledgements Funds for the support of this study have been

allocated by a cooperative agreement with NASA-Ames Research

Center, Moffett Field, California, under Interchange No. NAG2-

99 l, and by the National Science Foundation, Grant Number ASC-

9102497, and Grant Number CCR-9503829.

References

[Ake93] Kurt Akeley.

[CCF94]

[CN93]

[CT82]

[CU92]

[DCH88]

[DH92]

[GL94]

[Kru90]

[Lev88]

RealityEngine graphics. Computer

Graphics (A CM Siggraph Proceedings), 27:109- I 16,
1993.

Brian Cabral, Nancy Cam, and Jim Foran. Acceler-

ated volume rendering and tomographic reconstruc-

tion using texture mapping hardware. In ACM Sym-

posium on Volume Visualization, pp. 91-98, Washing-
ton, 1994.

T. J. Cullip and U. Neumann. Accelerating volume
reconstruction with 3D texture hardware. Technical

Report TR93-027, University of North Carolina,

Chapel Hill, N. C., 1993.

Robert L. Cook and Kenneth E. Torrance. A

reflectance model for computer graphics. ACM

Transactions on Graphics, 1(1):7-24, 1982.

G. G. Cameron and P. E. Undriil. Rendering volu-

metric medical image data on a SIMD-architecture

computer. In Third Eurographics Workshop on Ren-
dering, Bristol, UK, MAy 1992.

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan.

Volume rendering. Computer Graphics (ACM

Siggraph Proceedings), 22(4):65-74, 1988.

John Danskin and Pat Hanrahan. Fast algorithms for

volume ray tracing. In ACM Workshop on Volume
Visualization, pp. 91-98, Boston, 1992.

S. Guan and R. G. Lipes. Innovative volume

rendering using 3D texture mapping. In Image
Capture, Formatting and Display. SPIE 2164, 1994.

Wolfgang Krueger. Volume rendering and data fea-
ture enhancement. Computer Graphics (Proceedings

of the San Diego Workshop on Volume Visualization),

24(5):21 - 26, 1990.

Marc Levoy. Display of surfaces from volume data.

IEEE Computer Graphics and Applications, 8(3):29-

37, March 1988.

[Lev90a]

[Lev90b]

[Lev921

[LH91I

ILL94]

[MHC90]

[Sab88]

[SS92]

[ST90]

[TM67]

[UK88]

[VGK96]

[VGW93]

[Wes90]

1Wil92]

IWVG91]

[WVG94]

[WVGW94]

Marc Levoy. Efficient ray tracing of volume data.

A CM Transactions on Graphics, 9(3):245-261,1990.

Marc Levoy. A hybrid ray tracer for rendering

polygon and volume data. IEEE Computer Graphics

and Applications, 10(2):33--40, March 1990.

Marc Levoy. Volume rendering using the fourier

projection-slice theorem. In ProceedingsofGraphics

Interface '92, Vancouver, B.C., 1992. Also Stanford

University Technical Report CSL-TR-92-521.

David Laur and Pat Hanrahan. Hierarchical splatting:

A progressive refinement algorithm for volume

rendering. Computer Graphics (ACM Siggraph
Proceedings), 25(4):285-288, 1991.

Philippe Lacroute and Marc Levoy. Fast volume

rendering using a shear-warp factorization of the
viewing transformation. Computer Graphics (ACM

Siggraph Proceedings), pp. 451--458, 1994.

Nelson Max, Pat Hanrahan, and Roger Crawfis. Area
and volume coherence for efficient visualization of

3D scalar functions. ACM Workshop on Volume

Visualization, 24(5):27-33, 1990.

Paolo Sabella. A rendering algorithm for visualizing

3D scalar fields. Computer Graphics, 22(4):51-58,

1988.

Peter Schroeder and Gordon Stoll. Data parallel

volume rendering as line drawing. In ACM Workshop

on Volume _,rtsualization, pp. 25-32, Boston, 1992.

Peter Shirley and Allan Tuchman. A polygonal

approximation to direct scalar volume rendering.

Computer Graphics, 24(5):63-70, December 1990.

Kenneth E. Torrance and Sparrow E. M. The-

ory for off-specular reflection from roughened sur-
faces. Journal of the Optical Society of America,

57(9):1105-1114, 1967.

Craig Upson and Michael Keeler. The v-buffer:
Visible volume rendering. ComputerGraphics(ACM

Siggraph Proceedings), 22(4):59---64, 1988.

Allen Van Gelder and Kwansik Kim. Direct volume

rendering with shading via 3D textures. Technical

Report UCSC-CRL-96-16, Univ. of California, Santa

Cruz, July 1996.

Allen Van Geider and Jane Wilhelms. Rapid explo-

ration of curvilinear grids using direct volume ren-

dering. In IEEE Visualization '93, 1993. (extended

abstract) Also, Univ. of California technical report
UCSC-CRL-93-02.

Lee Westover. Footprint evaluation for volume

rendering. Computer Graphics (ACM Siggraph
Proceedings), 24(4):367-76, 1990.

Peter Williams. Interactive splatting of nonrectilinear

volumes. In IEEE Visualization '92, pp. 37--44, 1992.
Jane Wilhelms and Allen Van Gelder. A coherent

projection approach for direct volume rendering.

Computer Graphics (ACM Siggraph Proceedings),

25(4):275-284, 1991.
Jane Wilhelms and Allen Van Gelder. Multi-
dimensional trees for controlled volume rendering

and compression. In ACM Symposium on Volume

Visualization, Washington, ! 994.
Orion Wilson, Allen Van Gelder, and Jane Wilhelms.

Direct volume rendering via 3D textures. Technical
Report UCSC-CRL-94-19, Univ. of California, Santa
Cruz, 1994.

Figure 5: Autostereograms of CT head and MRI head (left and center), to be viewed without
instruments at a distance of 1-2 feet. Try to look at a point about three times the distance of

the page, 3-6 feet away. Raise page into line of sight, seeing 3 images. Middle image should

fuse, giving stereo effect. Blinking the eyes might help. Alternatively, place a card or piece

of stiff paper between images, and extending towards the eyes; page should still be about one

foot away. Right upper image is x-ray-style image of CT head. Volume has opacity only, and

light is emitted from back plane. CT head is classified as bone on a ramp from 0% at 90 to
100% at 130 Hounsfield units. MRI uses binary classification at threshold 550. For a new

viewpoint, stereo images required 18 seconds per pair; x-ray image required 1 second. All

images required 32 texture maps.

Figure 6: Vertices of regular icosahedron
(black) and its dual dodecahedron (gray)

are triangulated into 60 triangles (right,
center), which are recursively subdivided

(right, lower) to give points on the unit

sphere that serve as quantized normal
vectors.

Data Size

Set (voxels)

Hipip 64 x 64 x 64
MR brain 256x256x 109

Engine 256x256x 110
CT head 256x256x 113

Texture

Maps Class-
Needed ific'n

1 1

32 61

32 62

32 77

Wall-Clock Seconds

Render, 1 proc Render, 4 procs 1 proc
1 view stereo 1 view stereo unshaded

1.0 1.4 .8 1.2 .16

13.3 17.4 5.0 9.5 .70

13.5 16.9 4.7 8.8 1.10

13.5 17.0 5.3 9.5 1.33

Figure 7: Rendering and classification times for Voltx. Times are for a Reality Engine II, with one raster manager, using one or four 150-MHz

processors. Rendered images are 600x600 pixels. See Section 5 for discussion.

Figure 8: Autostereogram of Hipip (left, center, see Fig. 5 for viewing hints), and image of Engine (right).

Production editor: Please try to place this color plate on the top half of an even-numbered page, so that the
autostereogram pair (red+blue) is toward the outside margin. Thanks. (Van Gelder and Kim)

